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ABSTRACT

By integrating digital twin technology with artificial intelligence (Al) and machine learning (ML), solar
energy management systems have the potential to accurately predict future energy generation. This
project investigates the design and implementation of an Al-powered digital twin model for solar
panel arrays located around Flinders University’s Bedford Park and Sturt Campuses. This model is
designed to forecast the power output based on historical generation and irradiance data taken from
sensors located on the arrays, and weather forecast variables both current and historical such as
temperature, daylight hours, and weather conditions. Several Al and ML algorithms were proposed
for the model to test if the model can capture the complex, nonlinear relationships between
environmental factors and solar generation. By data processing and simulation, the model provides
predictive insights that can assist with operational planning, energy optimisation, and grid integration
enhancement. This study evaluates the accuracy and reliability of the digital twin forecasts through
the comparison of different Al and ML models, different locations of the arrays, and comparison with
predictions on different days with historical solar data. This study demonstrates the potential of Al-
powered digital twins to improve the reliability and efficiency of solar energy systems. These findings
contribute to the increase knowledge of predictive digital twin applications in renewable energy
management systems and highlight opportunities for future development of intelligent energy
forecasting systems.
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¢ adequately acknowledging the work of other people when you include it in your work
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It is important to understand all the common failures in meeting academic integrity requirements,
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1. INTRODUCTION

1.1. Overview

With the global transition from fossil fuels to renewable energy sources (RESs), solar has become
one of the fastest growing energy sources (Arafet & Berlanga, 2021). However, solar is inherently
intermittent at generating power, and requires robust understanding of energy patterns, forecasts,
demand, and grid management. Traditional energy management systems (EMS) such as rule-
based controls, data loggers, and Supervisory Control and Data Acquisition (SCADA) lack the
intelligence and adaptability required for modern decentralised energy systems. This has seen
growing research in intelligent systems that assist with predictions, responsiveness, monitoring and

decision-making.

In response, there is an increasing interest in integrating artificial intelligence (Al) and machine
learning (ML) with digital twin (DT) technology to create an Al powered Digital Twin System (DTS).
Al-enhanced DTs are powerful tools that can assist with predictive maintenance, energy output

predictions, forecasting, diagnostics, control, and decision-making.

This thesis explores how combining Al and ML with DT technology can address these challenges
in forecasting by developing a dynamic data-driven model capable of predicting solar generation

performance.

1.2. Background and Significance

A Digital Twin (DT) is a powerful tool that virtually represents a physical asset, system or process,
by continuously synchronising with real-world data to enable forecasting, optimisation and
monitoring. In the renewable energy sector, a DT can model the operational behaviour and
environmental influences of an array of solar panels, by acting as intelligent cyber-physical

systems.

In parallel, Al and ML algorithms such as Random Forest (RF), Neural Networks (NN), and Long
Short-Term Memory (LSTM) have proven their capability of learning complex nonlinear
relationships between weather patterns and solar energy output, making them powerful tools for
forecasting. Operational efficiency and energy management could be improved by integrating

these models into a DT framework to create a predictive and adaptive system.

The significance of this project is to provide an insight into the spatial reliability of an Al-based solar
forecasting framework. This project forms part of a larger DT ecosystem for managing solar arrays
located around Flinders University’s Bedford Park and Sturt campuses, by developing a

forecasting layer that predicts the solar generation for three different sites. By comparing the



performance across these sites with topographical differences, this project follows a practical and

scalable approach.

1.3. Key Definitions

o Artificial Intelligence (Al): Computational methods that enable computer systems to perform
tasks like decision-making, and problem solving.

o Digital Twin (DT): A virtual replica of a physical asset that mirrors the state, behaviour, and
behaviour of that particular asset in real time.

e Machine Learning (ML): A field of study in Al where systems learn and improve from data
without being explicitly programmed.

e Solar Forecasting: Using meteorological and operational data to predict the solar power

generation over a specified horizon (e.g., hours or days ahead).

1.4. Problem Statement

Due to variability of weather and environmental conditions, accurately forecasting solar energy
generation is challenging. Traditional methods often fail to capture complex weather and
environmental dynamics leading to inefficient energy management and poor planning. With the
growing interest in Al-powered DTs, efficient energy management, improved forecast accuracy,
and grid stability can be achieved by integrating real-time data with predictive ML techniques.
While current literature highlights the concept of DTs and their potential, limited studies have
implemented and validated DTs for forecasting solar energy generation, particularly across multiple

solar arrays.

This project investigates how Al and ML techniques can enhance solar energy generation
predictions to provide a more reliable and efficient prediction for renewable energy management by
addressing the research question: How can Al Digital Twin Technology improve the accuracy of

solar energy generation forecasting?

1.5. Project Aim and Objectives

1.5.1. Project Aim

To design and implement a solar forecasting framework that forms the predictive core of a digital

twin capable of managing solar energy systems.

1.5.2. Project Objectives

e To collect and preprocess historical solar and irradiance data from three sites around
Flinders University’s Bedford Park and Sturt campuses: Information, Science and
Technology (IST), Drama, and Sturt East Buildings.

e To collect and preprocess historical and real-world weather data from WeatherAPI.

2



e To develop four Al/ML algorithms: Random Forest (RF), Extreme Gradient Boosting
(XGBoost), Multilayer Perceptron Neural Network (MLPNN), and Long Short-Term Memory
(LSTM).

e To train and validate these four algorithms for seven-day solar generation forecasting.

e To compare the performance of each model using RMSE, R?, and MAE metrics.

o To identify the impact of environmental and topographical influences across the three sites.

o To outline integration pathways for future work and embedding this framework into the

larger digital twin system (DTS).

1.6. Thesis Statement

This thesis provides the groundwork for providing an effective and scalable approach for short-term
solar energy prediction, by integrating Al/ML algorithms into a DT framework. Using a combination
of ML techniques and synchronised weather and solar data, the proposed system enhances
forecasting accuracy and establishes a foundation for future real-time, intelligent energy

management across distributed solar networks.

1.7. Thesis Structure

This thesis is structured into six chapters beginning with Chapter 1 introducing the research
context, motivations, and objectives. Chapter 2 is a review on the existing literature on the concept
of DTs, the role Al acts in DT technology, and DT applications in renewable energy forecasting.
Chapter 3 outlines the methodology and system design followed to complete this project, including
data collection, processing, model selection, training and validation, evaluating results, and
outputting results. Chapter 4 presents the experiment setup, evaluation metrics, and results
achieved from the four algorithms across the models developed for all three sites. Chapter 5
discusses the results comparing them to existing studies, highlighting key finding and limitations.

Chapter 6 concludes this project and lists some suggested directions for future research and work.



2. LITERATURE REVIEW

2.1. Overview

Recently there has been growing interest in intelligent energy management systems (EMS) to
assist with predictions, responsiveness, monitoring, and decision-making. In response, there is an
increasing interest in integrating artificial intelligence (Al) with digital twin (DT) technology to create
an Al-enhanced digital twin system (DTS). Al-enhanced DTs are powerful tools that assist with
predictive maintenance, energy output predictions, forecasting, diagnostics, control, and decision-

making.

This literature review examines the theoretical foundations and recent developments in DT
technology specifically focussing on implementing Al and ML with this technology, and why DTs
can be used for solar forecasting. The objective is to identify what is a DT, identify the strengths
and limitations of existing forecasting approaches, and outline the current research gaps and

challenges, establishing the conceptual basis for present DT models.

2.2. Concept of Digital Twins

Although DT technology has gained popularity over the past decade, the concept of DTs is a lot
older with Micheal Grieves proposing a three-component DT for Product Lifecycle Management at
the University of Michigan in 2002 (Grieves, 2016). A similar concept known as ‘Mirror Worlds’ was
mentioned earlier in 1991 by David Gelernter, where the physical world inputs information to a
software model to mimic reality (Gelernter, 1993). Rasheed et. al. (2020), defines DTs as “a virtual
representation of a physical asset enabled through data and simulators for real-time prediction,
optimisation, monitoring, controlling and improved decision making”. Initially emerging from the
aerospace industry, DTs have evolved to be deployed in a wide range of disciplines such as,

agriculture, healthcare, manufacturing, construction, energy, and sustainability.

DTs consist of five components: physical assets, virtual counterpart, data streams, bidirectional
communication framework, and analytic services (Jiang et al., 2021). They are typically powered
by either multi-physics, multi-scale or hybrid-system models (Jiang et al., 2021). DTs continuously
update the virtual model by collecting real-time data from Internet of Things (loT) sensors
embedded on the physical asset. The virtual model uses this data to mirror the behaviour,

performance and state of the physical asset.

Recent studies have indicated DTs improve the performance conditions, optimise physical assets,
increase the life of RESs, lower repair costs, and decrease downtime (Attaran & Celik, 2023;

Sharma et al., 2024). These benefits make them especially useful for solar panel forecasting and



energy management. For example, a DT for solar panels can use irradiance and weather data to

adjust the performance and energy generation.

2.3. The Role of Artificial Intelligence in Digital Twins

In a digital twin system (DTS), Al can contribute to many roles including the six broader roles
known as AI-DTS (Al for Digital Twin Systems) as indicated in the DTS Architecture (figure 1).

/e
physical entity |- };\'._

Pe
~

e [

virtual entity | = \
(digital twin) | J |

6.AL decision-makin

Digital Twin System

| ereation

b m -

LLAI: data an

external data : : --------- GM: generative modeling

Figure 1 — Digital twin System Structural Architecture showcasing different Al roles (Emmet-Streib,

2023).
Table 1 — The six different Al-DTS techniques and their roles in the DTS (Emmet-Streib, 2023).
AI-DTS Techniques Role in the DTS Significance to the DTS
1. Al: Optimization A process that involves the | Allows the simulation to capture
(Model Creation) digital twin using data and | the essential features of the

parameters to estimate and | physical entity to help create the

assist with creating the model.
model.
2. Al: Optimization Ensures the DT is Involves regularly updating the
(Model Updating) synchronised with its data and assets of the DT.
physical counterpart whilst
in operation.
3. Al: Generative Uses ML models like Contributes to the simulation
Modelling generative adversarial model by learning underlying




networks (GANSs) to
generate data containing
characteristics from large-

scale data.

patterns and distribution of data
to help generate new or similar
data from the DT.

4. Al: Data Analytics

Examines datasets to
identify any patterns and

trends.

Allows the model to make
appropriate decisions and solve

problems.

5. Al: Predictive Analytics

Using statistical algorithms
and ML to predict future

outcomes.

Allows for future predictions by
identifying patterns in historical

data.

6. Al: Decision Making

Making decisions and
summarises all results

achieved up to this point.

Can integrate everything together
and produce quantitative or

qualitative summaries of the DTS.

In solar forecasting, integrating these six Al-DTS techniques can enhance the capabilities of DT
models, enabling advanced analytics, intelligent forecasting and real-time decision-making. For
instance, in solar energy systems Al algorithms can assist with processing diverse data sources

such as irradiance, and weather forecasts to predict future PV output.

Many machine learning (ML), and deep learning (DL) techniques can be used to assist with
forecasting in energy management. Researchers have had successful performance in using
ensemble methods such as Random Forest (RF), and Extreme Gradient Booster (XGBoost) in
forecasting energy output in photovoltaic systems (Abdou & Memon, 2023; Didavi et al., 2021). RF
is easy to use and offers robustness against overfitting, whereas XGBoost offers higher accuracy
and efficiency in handling large datasets. Choi et. al. (2018 as cited in Wang et. al., 2023) suggests
LSTM to assist with power load forecasting like predicting the power load data. LSTM also has the
benefit of capturing long-term dependencies in data, enabling more accurate predictions. Huang et
al. (2020) demonstrated success in achieving good performance with Multilayer Perceptron (MLP)

compared to LSTM.

Integrating Al with DT technology enables the model to continuously learn and adapt based on
new data streams. This adaptive intelligence transforms the twin from static to a self-updating
predictive system, allowing dynamic optimisation in energy management, and improve reliability

and resilience against environmental fluctuations.

2.4. Solar Forecasting Techniques

2.4.1. Current Solar Forecasting Techniques



Current solar forecasting techniques include satellite images, all-sky imagers (ASls), and
Numerical Weather Prediction (NWP) models. Satellite images determine cloud pattern using
visible and infrared images taken from satellite-based sensors flying overhead (Sobri et al., 2018).
ASls are digital cameras that capture images with a 180-degree field of view, enabling the entire
sky from one horizon to the other to be captured (Barhmi et al., 2024). ASls detect clouds in the
pictures using image-processing techniques and determining the Cloud Motion Vectors by lliking
the clouds within consecutive images. Using these vectors, future cloud positions are determined,
and future irradiance is estimated accordingly. Historically, NWP models have been the primary
technique for forecasting applications to predict variables such as surface solar irradiance,
temperature, humidity, wind, and probability of precipitation (Sobri et al., 2018). However, for solar
forecasting they require statistical methods to correct errors and blend the output for multiple
models (Sobri et al., 2018).

2.4.2. Current Techniques vs Digital Twins

Although current forecasting techniques and DTs can be used in energy management for
monitoring, controlling, and optimising power generation and distributions, DTs offer the following

advantages compared to techniques like satellite images or NWP:

1. Real-Time Adaptability: Al DTs have dynamic response time to constant changing
environmental and operational conditions.

2. Predictive Maintenance: DTs detect early signs of faults and send recommendations to
the virtual machine to complete regular maintenance or repairs, reducing system downtime
and costs.

3. System-Level Optimisation: DTs optimise and can communicate through interconnected
components (e.g., generation, loads, wind speed, solar irradiance, and storage).

4. Simulation and Decision-Making: DTs simulate future predictions by using what-if

scenarios to enable proactive energy management.

Soori et. al. (2023) mentions DTs have the capability to help maximise the value of renewable

energy systems, reduce costs, and minimise downtime.

2.4.3. Applications of Digital Twins in Solar Systems

Due to their ability to model, optimise and simulate a physical entity in real-time, Al DTs can be
deployed in many fields including solar and wind turbine energy systems. DT technology can allow
considerable planning and designing, energy forecasting, reliability analysis, fault detection,
predictive monitoring, and intelligent maintenance transforming EMSs. These application areas
allow for EMSs to be more reliable and efficient. Table 2 outlines some of the potential uses for

DTs in managing solar systems.

Table 2 — Various applications of DT technology in Solar EMS (Fahim et al., 2022).
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Application Potential Uses

Plan and Design e Solar system design (Massel et. al., 2021).

e Develop plans and assist with operations.

e Plan and predict energy consumptions and supply
(Kavousi-Fard et. al., 2024)

Energy Forecasting e Use of optimal planning and operating, real-time
control and remote monitoring to power output
(Fahim et. al., 2022).

Reliability Analysis e Improve performance using real-time data

monitoring for reliable analysis. (Wang et. al., 2021).

Management and Monitoring e Optimal management of solar panels.

Fault Detection e Improve stability and reliability of solar panels using

fault detection.

Security and Resiliency e Real-time security protection (Danilczyk et. al., 2019)
e Enhance security.
e Detect cyber-attacks (Danilczyk et. al., 2019)

e Protect the grid from natural outages (Danilczyk et.

al., 2019)
Predictive Maintenance and e Enhance reliability
Condition Monitoring e Predict faults and failures

¢ Decrease maintenance costs
¢ Remote monitoring and control

¢ Optimise performance

2.5. Integration Strategies

Integrating Al-enhanced DTS into existing EMS shifts the systems from a conventional rule-based
management system to a predictive, self-optimising system. This integration assists with solar
forecasting by using real-time data from sensors and management systems to create a dynamic,
evolving simulation that predicts future outcomes more accurately than traditional methods. The

primary layers common across all integrations of DTS into EMS include:

1. Physical Asset: The physical object used to generate the DT (e.g., solar panels).

2. Data Extraction Layer: Using loT enabled sensors embedded onto the solar panel arrays
to capture parameters important for energy management such as irradiance, temperature,
conditions, cloud cover. There parameters are then transmitted to the virtual entity (DT) for

analysis and decision making.



3. Intelligent Modelling Layer: Using Al, ML, and DL algorithms such as LSTM to assist with
power load forecasting and predict power load data (Choi et. al., 2018 as cited in Wang et.
al., 2023). This layer is where the data is interpreted by Al for predictive accuracy and
adaptability for decisions made.

4. Design, Control and Execution Layer: Using the output of the virtual model, real-time
decisions are made, and strategies are executed autonomously. Some decisions that the
DT can make include dynamic load balancing, dispatch energy storage, predictive
maintenance, recommend maintenance schedules, and synchronise assets connected to
the grid. Model Predictive Control (MPC) and Reinforcement Learning (RL) can be

embedded into the DTS to assist with system-level optimisation.

2.6. Research Gaps and Challenges

Although DTs have the potential to transform EMS and forecasting using Al algorithms, ML, DL,
and optimisation frameworks there are still some current research gaps and technical challenges

with this technology:

1. Real-Time Al Inference: Current literature use DT models that combine SCADA and AI-DT
technology or offline batch-trained models. This often means that real-time inference using
live sponsors are unexplored. This lack of inference is mostly due to DTs in the energy
sector using non-standard frameworks and architecture as most developers use their own
architecture models.

2. Data Quality and Availability: DTS rely on real-time data from sensors and |loT devices,
which can produce low quality data if coverage is inconsistent or if there’s environmental
noise. This can lead to missing data, and limitations in data quality and availability
impacting the performance of the Al techniques in the virtual entity.

3. Complex Computational Functions: Any Al DTs using deep learning models and real-
time forecasting are intense and demand robust computational resources. These systems
often require efficient architecture like physics-models or hybrid cloud-edge configurations
that are not standardised.

4. Tool-Specific Implementations: There is a lack of academic works that evaluate the use

of DT platforms like XMPro for Al-powered DTs in the renewable energy sector.

These gaps highlight the need for robust, adaptive, and explainable DTS for the renewable
energy sector. Given these gaps, this project develops and evaluates the capability of Al-
enhanced DTs by creating forecasting models designed to be the core function of a broader DT
project. These models are designed to use real solar generation and irradiance data collected
from distinct sites at Flinders University via the university’s Building Management System
(BMS).



2.7. Summary

This chapter analysed the concept of DTs from its origin to the current state of implementing Al
with DT technology in solar energy systems. This review highlighted the significant potential of
combining these two paradigms for improved forecasting. The literature indicates strong progress
in individual domains such as DTs for power load forecasting but showed limited work outside of

the scope.

The next chapter outlines the methodology adopted for this project, which is based on some

concepts outlined in this chapter.

10



3. METHODS

3.1. Overview

This chapter outlines the methodology followed to design and implement a model to predict the
solar generation for the next seven days as part of a broader digital twin project for managing the
solar system at Flinders University’s Bedford Park and Sturt Campuses. This model follows data-
driven design principles like ones that appear in Amasyali et al. (2018) and Seyedzadeh et al.
(2020). Historical solar generation, irradiance and weather data, and collecting real-time weather
inputs via an Application Programming Interface (API) were used to train and evaluate four
predictive machine learning (ML) algorithms: Random Forest (RF), Extreme Gradient Booster
(XGBoost), Multilayer Perceptron Neural Network (MLPNN), and Long Short-Term Memory
(LSTM).

Each step was performed to ensure the methodology and results are reproducible and the derived
from existing digital twin (DT) system architectures. Figure 2 shows the final experimental
procedure workflow followed in the project to make sure the model can serve as a practical

forecasting and decision-making support tool.

Data Acquisition —b{Data Preprocessing}—b Model Selection — Tgﬁé”;;gd —»{ Evaluation }—h Output

Figure 2 — Experimental Procedure workflow.
1. Data Acquisition:
Solar and weather data collected and updated daily to ensure predictions were made using
the most recent information.
2. Data Preprocessing:
Datasets prepared for training with times aligned, interpolated, and resampled. Outliers
corrected and normalised features.
3. Model Selection:
Chose the three most appropriate models for initial training purposes with plans to expand
into LSTM at a future stage.
4. Training and Validation:
Datasets split chronologically into training and testing sets. Performed hyperparameter
tuning to balance bias, variance, and computational efficiency.
5. Evaluation:
a) RMSE (Root Mean Square Error) — quantify average error magnitude.
b) R? (Coefficient of Determination) — how well predictions explain variance in observed

data.
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6. Output:
Each model produced 24-hour rolling forecast of predicted solar generation at 15-minute
intervals, 7-day rolling forecasts at hourly intervals, and pick two random days to compare

predicted generation vs actual to evaluate model’s accuracy.

3.2. System Architecture and Design

3.2.1. Architecture

Loosely based on architecture designs proposed by Emmet-Streib (2023) and essential
components listed by Khajavi et al. (2019), the system architecture for this project comprised of a
physical layer, data and integration layer, and virtual layer. This architecture was chosen due to its
seamless interaction between real-world data, Al analytics, and virtual forecasting modules,
creating a continuously updating framework. Figure 3 shows the general system architecture

created for this project, demonstrating how it integrates data to generate future predictions.

Solar (PV) Data Historical Solar
Gen

Evaluation Metrics
eration Data

|
|
| Flinders University
Solar Panel Building
|
|
|

. Data and Integration Layer Virtual Layer
Physical Layer g Y Y
- - - - - - - - - - ----- ==~ o
s DT Python Script (Virtual Assets) \

Historical Weather /

Dala | \

Data Collection with Data Preprocessing Data Partitioning and [

Weather API APl Key and Cleaning Nomarlisation |
|

Current and Future | l I

Weather Data |
|

| Weather Data Model Configuration |

|

| . |

Flinders University Solar PV Local Machine Training and Oumg’:n:t;\:lmn
Arrays (Physical Assets) f Storage Validation 3
,,,,,,,,,, |
’ A | {

|
|
|
1

System (BMS)

Historical Iradiance
Data \

Figure 3 — System Architecture Diagram

3.2.2. Physical Layer

The physical layer represents the physical assets of the solar system, which in this case is the
solar photovoltaic (PV) panels (figure 4) and their corresponding inverters, which convert
generated DC power to AC output. Sensors are installed at each site to measure solar irradiance,
panel temperature, and send generation data to the university’s Building Management System
(BMS) (figure 5). This layer is responsible for the continuous collection of operational and
environment data fed into the DT if there are any faults or failures the DT detects that no data is

collected and send the user a warning during updates.
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Figure 4 — Solar panels at Flinders University Bedford Park campus (News Desk Flinders University,
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Figure 5 — The campus buildings solar generation page of the BMS

3.2.3. Data and Integration Layer

This layer is where the data is collected from the primary sources for historical and real-time data.
Although data acquisition and preprocessing are part of the virtual assets, it is performed as part of
this layer to make sure data is synchronised and features are extracted. Due to the datasets using
different timestamps and Adelaide having two time zones throughout the year (i.e., Australia
Central Standard Time (ACST) and Australia Central Daylight Time (ACDT)) the model handles
timestamp standardisation, as well as missing value imputation. The scripts also merge the
datasets using “asof” temporal alignment, to find any matches in times and dates between the
three datasets. Each dataset is passed in as a comma-separated value (CSV) file.
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3.2.4. Virtual Layer

This layer represents the forecasting engine, where the Al-driven model simulates and predicts

solar generation for the next seven days. In this layer ML algorithms are tested to produce short

term (up to seven days) generation forecasts. The virtual model acts as most of the virtual asset

and the core component that makes the DT functional. This asset allows for the expansion into

what-if analysis and predictive management of energy flow for future development stages.

3.3. Data Acquisition

3.3.1. Data Sources

Three structured datasets were acquired for this project (table 3):

Table 3 — Data sources and relevant inputs.

Reporting

Dataset Feature Name Value Type | Unit/Format Description Modelling Use Data Type
Frequency
DD-MMM-YY tmﬁe:(t);:frwL for 1;?[2:;3?: fsor
. _ HH:MM:SS ) P NES- | istorical (Used
Timestamp Datetime 15 minutes PV generation | Synchronisation .
AM/PM data from IST key for feature only in IST model)
ACDT/ACST _ yrore
site. merging.
PV output
IST_DB_PV_kW.
—os- PV desy fromIST Target variable
. (Information for model . .
IST_DB_PV_kW Numeric | .y (kilowatts) | 15minutes | Scienceand | trainingana | sioricat(Used
(float) - only in IST model)
Technology) prediction for
building IST building.
arrays.
Time index for
PV output
DD-MMM-YY from DRAMA DF!,B_\MA Historical (Used
] ) HH:MM:SS . readings. .
Timestamp Datetime 15 minutes (Drama) o only in DRAMA
AM/PM buildin Synchronisation del
ACDT/ACST arraysg key for feature model)
i merging.
DRAMA_DEB_PV_kW.csv Target variable | Target variable
Numeric t::irn::\m:;ld trf.;;rilr:oiiiﬁ Historical (Used
DRAMA_DB_PV_kW KW (Kilowatts) | 15 minutes g 1ng only in DRAMA
(float) prediction for prediction for del
DRAMA DRAMA model)
building. building.
PV output Time index for
DIEI—_INMMMM;(SY from STE STE readings. | Historical (Used
Timestamp Datetime AlM!PP.-d 15 minutes (Sturt East) Synchronisation only in STE
ACDT/ACST ZL:I,L:;:E keyniz:gﬂienagture model)
STE_DB_PV_kW.csv Target variable | Targetvariable
Numeric for model for model Historical (Used
STE_DB_PV_kW kW {Kilowatts) 15 minutes training and training and only in STE
(float) N s
prediction for prediction for maodel)
STE building. STE building.
) : DD/MMIYY Local Temporal . )
Bedfordpark_hourly_weather.csv datetime Datetime HH-MM Hourly timestamp of feature key far Historical/Current
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weather feature
record. alignmentwith
PV data.
Current Predictor
Numeric °C (Degrees temperature | feature - affects ) )
temp_c (float) Celsius) Hourly at time of PV generation Historical/Current
recording. efficiency.
Predictor
Numeric Relative feature — affects
humidity ) % (Percent) Hourly humidity irradiance and | Historical/Current
(integer)
level. panel
efficiency.
Predictor
Numeric mm feature -
precip_mm (float) (Millimetres) Hourly Rainfall. . rgduces Historical/Current
irradiance and
PV generation.
Predictor
Numeric Km/h Average wind i:ﬂt:rrlf:;s
wind_kph (Kilometres Hourly 8 Historical/Current
(float) speed. panel
per hour)
performance
and cooling.
Primary
predictor -
) . affects PV
cloud Numer|c % (Percent) Hourly Estimated generation and | Historical/Current
(integer) cloud cover. X
key variable for
generation
forecasting.
Weather -
L. Descriptive
String (e.g condition feature — used
condition Text (string) N Hourly label (e.g., ) Historical/Current
Sunny) for categorical
Partly Cloudy, encodin
Clear). &
Numeric °C (Degrees Dew point Secondary
dewpoint_c g Hourly P predictor — Histarical/Current
(float) Celsius) temperature.
measurement
of atmospheric
moisture.
Masking feature
- separates
. Boolean Daylight daylight and . )
is_sun_up o) 01 Hourly indicator. nighttime hours Historical/Current
(zero output
periods).
Auxiliary trend
. Numeric °C (Degrees . .Da\Ly variable _for the : ]
mintemp_c : Daily minimum day - assist with | Historical/Current
(float) Celsius)
temperature. level
forecasting.
Auxiliary
Numeric °C (Degrees Daily Uzzidfig:[;;_il
maxtemp_c| g Daily maximum . Y| Historical/Current
(float) Celsius) generation
temperature.
range
estimating.
Feature to
. Datetime HH:MM . Time of calculate . .
sunrise (string) AM/PM Daily sunrise. daylight Historical/Current
duration.
Feature to
calculate
Datetime HH:MM . Time of daylight . .
sunset (string) AM/PM Daily sunset. duration and Historical/Current
solar window
estimation.
DD-MMM-YY Temporal
Timestamp of | feature key for
) HH:MM:SS ) . ) -
Timestamp Datetime AM/PM Daily irradiance feature Historical
ing. li t with
PV_MET_75_Irradiance.csv ACDT/ACST reading alignment wi
PV data.
Numeric W/m? (Watts Measured Core predictor
PV_MET _75 Irradiance per metre Daily daily variable — Historical
(float) . )
squared) irradiance. baseline for PV

generation
potential.

3.3.2. Location and Duration
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The data corresponds to three sites located at Flinders University’s Bedford Park and Sturt
campuses all located in the suburb of Bedford Park, South Australia. Relevant weather data and
time zones were gathered by coding the latitude and longitude coordinates for Bedford Park when
collecting from WeatherAPI. Historical records span September 2024 — October 2025, with the
model testing performed using a January 2025 — October 2025 holdout period for validation. Data

handling and analysis was conducted between August 2025 and October 2025.

3.3.3. Software Tools and Python Libraries

All initial preprocessing, training, and evaluation were conducted in Python 3.13 using Google
Collab. These codes were initially run manually, before being automated to run autonomously and
converted to Python Scripts and ran using Python shells (IDLE). The following libraries were used

in the codes:

o NumPy, pandas: For data preprocessing, feature engineering, manipulation and
transformation.

o XGBoost, scikit-learn and TensorFlow/Keras: For implementing ML and DL algorithms.

¢ Matplotlib and Seaborn: For performance visualisation, correlation analysis and

presentation of results.

Reproducibility was maintained keeping duplicates of codes on different machines and a USB with

a Readme.ixt file created with instructions on setting up the experiment and running the code.

3.4. Data Preprocessing

3.4.1. Timestamp Standardisation
Due to variation in timestamps in the CSV files, and South Australia using two different time zones
throughout the year because of daylight savings, timestamps were cleaned using Regular
Expression (RegEx). RegEx extracts and matches the timestamp formats to standardise the
timestamps into DD-MMM-YY HH:MM:SS AM/PM ACDT/ACST format. This ensured temporal

alignment across data sources and the timestamp formats in the output are aligned with the data.

3.4.2. Data Cleaning and Resampling

Any records with a missing timestamp were dropped, with forward fill interpolation being used to fill
time gaps. Forward fill fills in any missing values by propagating the last known values forward. All
data was resampled to hourly intervals to match the weather data frequency. All duplicates were

removed to prevent sampling bias.

3.4.3. Merging Datasets

The three datasets used for the model (irradiance data, weather data, and generation data) were

merged using the pandas merge_asof function. This function performs as “asof” merge, which
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matches to the nearest key compared to standard left join which requires exact keys, this is
particularly handy for time series data and other ordered datasets. This merge created a unified

dataset for model training.

3.5. Feature Engineering

3.5.1. Temporal Features

Pyton’s datetime module was used to extract time-based features such as hour of day, day of year,
and weekday for timestamp data and capture diurnal and seasonal variability in solar irradiance.

These features enabled the model to learn cyclical generation patterns linked to solar positions.

3.5.2. Seasonal Encoding

Using one-hot encoding via pandas.get_dummies(), each observation was categorised into one of
four seasons (summer, autumn, winter, and spring) based on the month recorded. This allowed for
the model to detect season-dependent changes such as temperature and precipitation that impact

energy generation without imposing ordinal relationships.

3.5.3. Sunrise and Sunset Conversion

To maintain consistency with all other temporal features, the times recorded for sunrise and sunset
were converted into numerical formats (minutes since midnight). Roughly less than 2% of missing
entries were found, so these were imputed using the column mean to preserve statistical integrity

and prevent model bias.

3.5.4. Feature Selection

Following correlation and mutual information analysis against the targe variable (solar generation
non-numeric and low importance columns (e.g., weather conditions) were removed. The final

features were selected based on relevance, noise reduction, and improved training efficiency.

3.6. Predictive Model Configuration

3.6.1. Algorithms Selected

Four algorithms were selected based on demonstrating different algorithmic paradigms for
regressions and reflecting similar works by Yalgin et al. (2023), Sehrawat et al. (2023), and Al-
Isawi et al. (2023). These models enable comparative evaluation to be conducted between

classical and deep learning methods:

¢ Random Forest (RF): An ensemble tree-based learner combining multiple decision trees
to produce an accurate and stable model. RF is common in tasks like classification and

regression as it offers interpretability and robustness.
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e XGBoost: An open-source ML library that uses a parallelised, regularised gradient-boosted
framework commonly used for tabular data. XGBoost as the benefit of superior error
reduction.

o MLPNN: A feedforward neural network (NN) that consists of three layers commonly used
for nonlinear relationships.

e LSTM: A recurrent NN suited for temporal dependencies in time-series forecasting.

3.6.2. Data Partitioning and Normalisation

After the datasets were merged the data was split into 80% training and 20% testing subsets using
random seed of 42 for reproducibility. StandardScaler was used to standardised features and

ensure equal weighting and stable gradient descent.

In the LSTM framework, a sliding window approach was used to preserve temporal dependencies,
and the data was reshaped into 3D arrays (samples, timesteps, features). This allowed the model

to learn from historical sequences of generation and weather data.

3.6.3. Model Configuration

¢ RF: 100 estimators, random_state = 42

e XGBoost: 100 trees, max_depth = 6, learning rate = 0.1, subsample = 0.8

e MLPNN: Two hidden layers (128 and 64 neurons) with ReLU activation Adam optimiser (Ir
= 0.001), dropout = 0.2, 100 epochs.

e LSTM: One LSTM layer with 50 units followed by a dense output layer, Adam optimiser, 50
epochs, batch size = 32.

3.6.4. Training and Validation

Models were trained using RMSE (Root Mean Square Error), R? (Coefficient of Determination),
and Mean Squared Error (MSE) loss with training and validation being conducted on the
designated subsets, ensuring no data were leaked. Training curves were monitored to detect
overfitting, while ensemble algorithms used internal cross-validation. Outputs were stored for

comparative evaluation based on consistent error metrics.

3.6.5. Forecasting and Visualisation

Two forecasts were produced for each model:

1. Accuracy Validation: Random samples of two past weeks were selected from the dataset
to validate the accuracy of the algorithms be comparing the predicted vs the actual PV
generation.

2. Future Forecasting: Using the current data as the starting point, a seven-day hourly

forecast was generated based on historical solar trends and average diurnal weather
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patterns. The Astral library assisted with computing the sunrise and sunset times taken
from the weather data, allowing the model to automatically nullify predictions during

nighttime hours.

For the manual test versions interactive Plotly visualisations were developed to display the next
seven-day forecast, and the predicted vs actual generation graphs. This allowed for evaluations to
be more dynamic when looking into model accuracy and trends. However, this was changed to
Matplotlib plots in the Automated versions due to limitations with the local machine where the

automated scripts are run from.

3.7. Evaluation Metrics

Performance logs were kept assessing forecasting accuracy and logging:

¢ RMSE (Root Mean Square Error): Measures the magnitude of large prediction errors.
¢ MAE (Mean Absolute Error): Captures the average absolute deviation.
¢ R? (Coefficient of Determination): Indicates how well the model predictions explain the

observed variance.
These metrics evaluate the stability, precision, and explanatory strength.

3.8. Planning Items

3.8.1. Safety Considerations

Table 4 — Safety Considerations Assessment.

No. Consideration Risk Mitigation
1 Data and Privacy Unauthorised access could Secure communication
compromise infrastructure. protocols, data encryption,

authentication mechanisms
and access control policies
were implemented to protect

data and prevent breaches.

2 | System Malfunction | Inaccurate predictions could lead Fail-safe mechanisms, and

or False to incorrect operational decisions | continuous model validation
Recommendations | (e.g., underutilised solar input, were implemented. A human
battery overcharging) also verified critical decision
pathways.

3.8.2. Project Risk Assessment

Table 5 — Project Risk Assessment.
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Risk Likelihood | Impact Mitigation

Forecast API Failure Medium High Cach recent data or fallback to historical
data.
Al Model Under Medium Medium | Iterative training, tune the model, introduce
Performance other neural network models if required.
Sensor Malfunction Medium Medium | Calibrate protocols and replace/remove

malfunctioned sensor and declare panel

redundant.

3.8.3. Project Timeline

The project was structured over a 10-month period, table 3 outlines the key milestones.

Table 6 — Key Milestones throughout the project.

Weeks Milestone(s)

1-8 Literature Review, Proposal Seminal, XMPro Academy, Software Familiarisation.

8-15 | Methodology, XMPro Academy Course Completion, Retrieve Solar Data, Begin

Designing and Implementing Data Stream with Solar Data

16-30 | Setup Final Python Scripts, Setup Al Algorithms, Collect Weather Data, Analyse

Results, Produce Results.

31-40 | Test Scripts, Complete Final Scripts, Log Issues and Bugs, Resolve Issues and Bugs.

To manage progress, dependencies and indicate milestones a Gantt chart was developed (Appendix
A).

3.8.4. Quality Management

To ensure model reliability and consistent data:

e Performance logs were kept to detect any drift in performance.

e Model outputs plotted on graphs to detect any difference as day progress.

3.9. Critical Assumptions

This project relies on several critical assumptions to properly develop and evaluate the feasibility of
Al-driven DT technology for forecasting solar generation. The first assumption is that it is assumed

that all sensor data collected form the solar arrays are time synchronised, accurately calibrated,
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and free from any major measurement bias. Another assumption is that the weather datasets,
including temperature, sunrise and sunset times, cloud cover, and humidity represent on-site
conditions based on the recorded conditions for Bedford Park, South Australia with a forecast

accuracy within £ 5%.

It is also assumed that all data preprocessing pipelines effectively mitigate missing or noisy values,
ensuring consistent input quality for training and validation. Due to all three sites being within the
same geographical region. Additionally, it is assumed that the digital framework can be
implemented into a streaming environment in the future with negligible data latency and near real-

time performance.

These critical assumptions establish the conditions to consider when interpreting the results. Any
deviation from these conditions such as sensor drift or inaccurate forecasts may impact the

reliability of the predictions and limit the generalisability of the findings.

3.10. Methodology Limitations

Although the methodology was designed to be a robust framework for developing the core of a DT
that can forecast solar generation, several limitations were encountered during implementation.
One primary constraint was the final performance of the LSTM framework. Due to the time
availability required for hyperparameter tuning, the model’s complexity, and iterative nature of
sequence learning, further optimisation was not fully completed within the project timeframe. This
led to optimisation tasks like adjusting the learning rates, lookback windows, and hidden layer
dimensions not being implemented. Consequently, the predictive accuracy of the LSTM framework

may not accurately represent the achievable performance of LSTM.

Another constraint was data quality and temporal resolution. Minor gaps and varying sampling
frequencies were present in some of the solar and weather data, requiring interpolation and
resampling. Consequently, this may have introduced smoothing effects or minor loss of high-
frequency dynamics. Standardisation of all data to hourly intervals and applying appropriate
preprocessing techniques help to mitigate these limitations. But some precision loss is

acknowledged.

Computational constraints restricted the ability to train model on longer historical windows and
perform extensive cross-validation runs. Using the available resources, the methodology was

updated to a balance thoroughness with practical feasibility.

3.11. Summary

This methodology outlined a data-driven approach for forecasting solar PV generation as part of

the functional component of a broader DTS. By systematically processing data, feature
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engineering and comparative modelling using RF, XGBoost, MLPNN, and LSTM, this project
achieved a reliable foundation for predictive energy management. Whilst limitations in time,
computation and integration do exist, the methodology demonstrates scalability and adaptability for

future deployment within a DT environment.
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4. RESULTS

4.1. Overview

This chapter presents the results obtained from the solar forecasting models developed for the
larger digital twin system (DTS) for solar energy management. These results outline the
comparative analysis on the performance of four machine learning (ML) algorithms (Random
Forest (RF), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron Neural Network
(MLPNN), and Long Short-Term Memory (LSTM)), seven-day forecasting, predicted vs actual

validation, and forecasting predictions across three different locations.

All results obtained follow the methodology outlined in chapter 3, using consistent preprocessing
and evaluation metrics. All models were trained using an 80/20 train-test split, with validation

performed through repeated runs to confirm reproducibility.

4.2. Model Performance and Accuracy

All four models were trained and tested using the same datasets, with initial testing using historical
solar generation from the Information, Science and Technology (IST) building located at South
Ridge at the Bedford Park campus. The training also used irradiance, and weather attributes (e.qg.,
temperature, cloud, humidity, precipitation, etc.). Model accuracy was assessed using Root Mean
Square Error (RMSE), coefficient of determination (R?), and Mean Absolute Error (MAE), with
performance logs logged with these values. Table 7 summarises the average performance of each

algorithm:

Table 7 — Model performance of algorithms using solar generation from IST building.

Algorithm Average RMSE | Average R? | Average MAE Notes

Low bias with strong
baseline accuracy.
Random Forest 5.676 0.926 2.878868913
Tendency to average

predictions.

More sensitive to
hypermeters. Larger
XGBoost 6.033 0.917 2.696869911
errors with lower

predictive performance.

Minor over-smoothing,
MLPNN 5.717 0.925 3.059
but good nonlinear fitting.

LSTM 5.702 0.925 2.831193349 | Best overall performance
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As shown in table 7 all the models achieved a high accuracy of 0.917 or higher. The LSTM
algorithm achieved the lowest MAE and RMSE, reflecting its ability to model time series dependent
patterns. RF and MLPNN performed competitively, with RF having the highest accuracy, whilst

XGBoost showed slightly greater variability due to boosting sensitivity.

4.3. Seven-Day Forecasting

The trained algorithms were used to predict the hourly solar generation of the IST building for the
next seven days following the current day at the time. Figures 6—9 show the results from each
algorithm:

RF Predicted Hourly Solar PV Generation for IST Building (Next 7 Days)
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Figure 6 — Predicted 7-day forecast from Random Forest IST model.
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Figure 7 — Predicted 7-day forecast from XGBoost IST model.

24



MLPNN Predicted Hourly Solar PV Generation for IST Building (Next 7 Days)
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Figure 8 — Predicted 7-day forecast from MLPNN IST model.

LSTM Predicted Hourly Solar PV Generation for IST Building (Next 7 Days)
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Figure 9 — Predicted 7-day forecast from LSTM IST model.
Key insight:

e Accuracy decreased in the RF and XGBoost models beyond three days, with the last four
days appearing to be generalised with similar values across the days.

o The expected diurnal cycle occurred with strong midday peaks, and negligible nighttime
outputs. Day-day variations particularly in the MLPNN and LSTM models correspond to
recorded fluctuations in solar irradiance. This confirms the model’s responsiveness to short-

mid-term weather effects.

4.4. Validation Against Historical Days

To test the accuracy and generalisability of the predictions, two past weeks were randomly
selected to compare the predictions against the actual solar generation reading from those weeks.
All algorithms were trained and validated using the same datasets as section 4.3. The two random

weeks selected were:

e  Week 1: 2025-03-27 00:00 - 2025-04-02 23:00
e Week 2: 2025-07-27 00:00', 2025-08-02 23:00
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Figures 10—-17 show how well the algorithms performed:
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Figure 10 — Week 1 predicted vs actual for Random Forest.
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Figure 11 — Week 2 predicted vs actual for Random Forest.
XGBoost Predicted vs Actual PV - Week 1
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Figure 12 — Week 1 predicted vs actual for XGBoost.
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Figure 13 — Week 2 predicted vs actual for XGBoost.
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MLPNN Predicted vs Actual PV - Week 1
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Figure 14 — Week 1 predicted vs actual for MLPNN.
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Figure 15 — Week 2 predicted vs actual for MLPNN.
LSTM Predicted vs Actual PV - Week 1
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Figure 16 — Week 1 predicted vs actual for LSTM.
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Figure 17 — Week 2 predicted vs actual for LSTM.
Key Insights:
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e On clear-sky days all predictions closely followed the patterns of the actual curves.

¢ Slight underestimations occurred around the midday peak.

¢ On days with constant changing weather patterns such as cloud cover, all algorithms could
not perform properly. This was expected due to unpredictable factors like cloud drifting.
During these periods, errors increased and major underestimations occurred.

o RF and XGBoost captured drifting and rapid changing patterns better that MLPNN and
LSTM.

4.5. Cross-Site Comparison

To evaluate generalisation and geographical impacts, the algorithms were used to test the model
with three different sites all within the suburb of Bedford Park, South Australia and part of the
Flinders University grounds: IST building, Drama (DRAMA) building, and Sturt East (STE) building.
Each location contains its own array of solar panels as part of the Flinders University BMS but with

different microclimatic and topographical conditions.

The IST building is located at South Ridge (the southern half of Bedford Park campus), which is
located on top of a steep hill, providing higher exposure and stronger wind flow. These factors may
influence irradiance stability and temperature. The DRAMA building is located at North Ridge (the
northern half of Bedford Park campus), which is down the hill from South Ridge and roughly 365m
(as the crow flies) from IST. The STE building is located at the Sturt Campus, which is the
northernmost point of the Flinders University Bedford Park grounds, 1.22 km (as the crow flies)

from IST, and is at a lower elevation than IST and DRAMA sites.

Although all these sites are in the same suburb, subtle variations in terrain height, slop orientation,

shading patterns do impact solar generation and irradiance readings.

Table 8 contains the performance metrics of each site, and figures 18- show the predictions of the

three sites recorded at the same time:

Table 8 — Cross-site comparison of algorithms performance metrics.

Average Average Average
Site Algorithm Notes
RMSE R? MAE
Random
5.676 0.926 2.878868913 Strong baseline.
Forest
Sensitive to
XGBoost 6.033 0.917 2.696869911
IST hypermeters.
MLPNN 5.717 0.925 3.059 Minor over-smoothing.
Excellent
LSTM 5.702 0.925 2.831193349 o
generalisation.
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Random
3.991 0.910 1.834299 Lowest RMSE.
Forest
DRAMA XGBoost 5.862 0.914 2.601145576 | Slight overprediction.
MLPNN 4.069 0.907 2.168764 Minor bias drift.
Consistent across
LSTM 4.205 0.9015 2.126342
cycles.
Random
4734 0.9048 2.200331 Stable output.
Forest
STE XGBoost 5.052 0.892 2.129645 Drop in R?.
MLPNN 4.629 0.911 2.288212 Good error control.
LSTM 4.813 0.9017 2 282142389 Minor lag observed.

RF Predicted Hourly Solar PV Generation for IST Building (Next 7 Days)
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Figure 18 — RF predicted 7-day forecast for IST building.

RF Predicted Hourly Solar PV Generation for Drama Building (Next 7 Days)
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Figure 19 — RF predicted 7-day forecast for DRAMA building.
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RF Predicted Hourly Solar PV Generation for Sturt-East Building (Next 7 Days)
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Figure 20 — RF predicted 7-day forecast for STE building.
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Figure 21 — XGBoost predicted 7-day forecast for IST building.

XGBoost Predicted Hourly Solar PV Generation for Drama Building (Next 7 Days)
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Figure 22 — XGBoost predicted 7-day forecast for DRAMA building.
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Predicted PV Generation (kW)

XGBoost Predicted Hourly Solar PV Generation for Sturt-East Building (Next 7 Days)
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Figure 23 — XGBoost predicted 7-day forecast for STE building.

MLPNN Predicted Hourly Solar PV Generation for IST Building (Next 7 Days)
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Figure 24 — MLPNN predicted 7-day forecast for IST building.

MLPNN Predicted Hourly Solar PV Generation for Drama Building (Next 7 Days)
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Figure 25 — MLPNN predicted 7-day forecast for DRAMA building.
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MLPNN Predicted Hourly Solar PV Generation for Sturt-East Building (Next 7 Days)
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Figure 26 - MLPNN predicted 7-day forecast for STE building.

LSTM Predicted Hourly Solar PV Generation for IST Building (Next 7 Days)

50

. 40

=

=

c

5

?; 30

2

g

5

(V)

P4

& 2

8

8

°

o

& 10
0

U

Oct 21 Oct 22 Oct 23
2025 Date (Bedford Park, SA 5042)

Oct 26 Oct 27 Oct 28

Figure 27 - LSTM predicted 7-day forecast for IST building.

LSTM Predicted Hourly Solar PV Generation for Drama Building (Next 7 Days)
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Figure 28 - LSTM predicted 7-day forecast for DRAMA building.
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LSTM Predicted Hourly Solar PV Generation for Sturt-East Building (Next 7 Days)
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Figure 29 - LSTM predicted 7-day forecast for STE building.
Key insights:

e Radom Forest and LSTM offered the most reliable forecast across varying terrain
conditions.

¢ Even minor differences in sites impact the sensitivity of predictive accuracy based on local
geography and weather variability.

e High R? values validate the generalisability of the model architecture.

e Accuracy can be attributed to terrain elevation and microclimatic differences.

e XGBoost tended to slightly overfit.

o MLPNN displayed moderate accuracy across all three sites.

4.6. Error Analysis

Error analysis was conducted evaluating the consistency and reliability of the predictive models.
Model accuracy was measured using RMSE, MAE, and R? as seen in Tables 7 and 8, supported

by visual inspections of the output graphs to identify deviations.

XGBoost over-predicted occasional under variable cloud conditions, whereas LSTM exhibited the
most stable residuals. This confirmed LSTM'’s capacity to learn temporal patterns.

Terrain elevation and shading contributed to systematic bias. IST suffers from hilltop irradiance

variability, which saw the widest spread of errors. Drama was the most consistent with predictions.

Random Forest despite being reliable for short-term predictions it did suffer from generalisation

and averaging values over periods longer than 3 days.

4.7. Summary

This chapter demonstrated the results achieved in this project by comparing four ML algorithms

across varying site and terrain conditions. Although difference in sites is minor, they highlight the

33



impact local geography and weather variability has on the sensitivity of predictive accuracy. These
insights are critical for scaling the DT framework to the whole Flinders University solar network,

where environmental conditions can influence performance.
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5. DISCUSSION

5.1. Overview

This chapter evaluates the significance, impact, and limitations the results presented in chapter 4
relate to existing research. This discussion aligns the results with the project’s aim of developing a
solar forecasting framework as part of a broader DT solar energy management system. This
chapter evaluates the findings discovered in the model performance across sites, interprets the
observed prediction patterns, compares the findings with existing literature, identifies the practical
implications for future integration, and determines how the results answer the research question:

How can Al Digital Twin Technology improve the accuracy of solar energy generation forecasting?

5.2. Significance of Results

As seen in chapter 4, all four models (RF, XGBoost, MLPNN, and LSTM) can effectively forecast
solar generation using historical solar and weather data, and real-time weather data. All four model
achieved an R? of 0.892 or higher with RF, MLPNN and LSTM achieving the highest accuracy
across all three sites (R? = 0.912). RF and LSTM consistently achieved the lowest RMSE and MAE
values, demonstrating their capability of capturing nonlinear relationships and temporal dynamics
in solar generation data. The results demonstrate strong capability in integrating these algorithms
into a DT, validates the methodology, and confirms data-driven approaches can support

autonomous EMS.

Compared to previous studies by Benali et al. (2019) and Yu et al. (2019), the accuracy achieved
in this project aligns and sometimes exceeds R? values for similar datasets for similar uses. RF’s
high accuracy and robustness against noise along with LSTM’s capacity to predict short-term
forecasts and model temporal dependencies mirror other findings identified in other solar
forecasting research. XGBoost showed slightly higher variance, indicating sensitivity to parameter
tuning, while MLPNN performed reliably but lacks temporal awareness compared to LSTM. These

results confirm the reliability of data-driven methods for DT technology.

5.3. Forecasting Behaviour

The results achieved from seven-day forecasting demonstrated that all models have the capability
of accurately capturing diurnal generation patterns. However, minor deviations during cloudy
conditions and sunrise/sunset transitions occurred, which was to be expected as it is difficult for the
algorithms to capture these patterns. The LSTM network experienced the smoothest transitions

with fewer outliers, consistent with its ability to model sequential dependencies over time.
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Random Forest provided the lowest RMSE and comparable performance with the benefit of lower
computational costs. Although RF is suitable for embedded or edge deployment in DT frameworks,
it does tend to lose accuracy after three days, due to the ensemble’s inability to extrapolate the

beyond that time, and its dependency on time scaling of data.

Short-term forecasts remained accurate within a confidence interval of £ 6% suggesting that
integrating these models into a hybrid approach could balance real-time performance and energy

prediction accuracy within the operational layer of a DT.

5.4. Terrain and Location Impacts

Cross-site comparison revealed that topographical and microclimatic factors impact prediction
accuracy. Since IST is positioned at the highest point above sea level compared to the other two
sites, it experienced greater irradiance fluctuation, while Drama appeared the most stable in results
due to balanced exposure. These findings support that local microclimates and terrain elevation
can contribute to forecast accuracy and uncertainty. They highlight the need for site-specific model
calibration with DTs to ensure predictive accuracy is maintained when scaling this framework for

multiple solar arrays.

5.5. Research Question Answered

This project successfully answered the research question: How can Al Digital Twin Technology

improve the accuracy of solar energy generation forecasting?

This project confirms the feasibility of deploying a DT to produce seven-day predictions. The
models produced an error margin of less than 6% with RF and LSTM being suitable for short-term
predictions, particularly three days or less for RF. For a fully functional DT, it is essential to

integrate the models with real-time data streams to complete the feedback loop.

5.6. Limitations and Impact

Certain limitations throughout the project impacted the results. A full seasonal coverage couldn’t be
achieved due to the limited training period. Computational and time constraints impacted the LSTM
model from not being fully tuned, likely impacting its performance. Some gaps in the weather and
irradiance data required interpolation, introducing minor uncertainties. Despite these constraints,

the outcomes remain consistent and repeatable, with each model’s reliability being validated.

5.7. Summary

This project contributes to a broader solar energy management DT by providing a modular Python-
based forecasting framework. This project demonstrates that Al-based forecasting models like RF

and LSTM can accurately predict solar generation. The demonstrated models form the analytical
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core of solar energy management DT strengthening the need for DTSs in the renewable energy

sector an area underdeveloped in current literature.
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6. CONCLUSIONS AND FUTURE WORK

6.1. Summary of Findings from Results

This project designed and implemented an Al-DT based solar forecasting framework that train and
validates four ML algorithms — RF, XGBoost, MLPNN, and LSTM - for short-term energy
predictions. Using historical solar generation, weather and irradiance data with real-time weather

data three sites were tested: IST, Drama, and Sturt East.

RF, MLPNN, and LSTM achieved the highest performance with average R? values above 0.90 and
RMSE below six, demonstrating strong accuracy. These results confirm that DTs can be reliable

for solar generation predictions if implemented with ML-based frameworks.

6.2. Project Significance
This project successfully met its objectives by:
1. Designing a scalable DT core for solar forecasting.
Training and Validating four Al/ML based predictive models in Python.

Demonstrating that AlI/ML algorithms can be used to accurate forecast solar generation

across multiple locations.

These findings contribute to the growing research in Al-powered DTs for renewable energy
management. This project serves as a foundation for supporting grid stability, improved renewable

energy forecasting accuracy, and autonomous decision-making.

6.3. Limitations
Several limitations were encountered in the project that impacted the results:
o LSTM requires further hyperparameter tuning for optimal performance.

e The limited data period restricted seasonal variation and long-term validations to be

conducted.

Despite these limitations, the outcome remains consistent, and the methodology is structured to be

repeatable and scalable for larger dataset and deployment.

6.4. Future Work

Future work should focus on optimisation, hyperparameter tuning the LSTM algorithm and
extending the system into a fully functional DT. For proactive energy scheduling and fault

detection, optimisation and recommendations layers should be incorporated. Using larger dataset
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and deeper architecture can Enhance the LSTM and hybrid Al models and capture seasonal and
spatial dependencies. The model can be deployed into a DT platform like XMPro to provide real-

time monitoring, and easier data integration.

6.5. Final Words

This project demonstrates that an Al-powered DT can effectively forecast future solar energy
generation with strong accuracy. By bridging the gap between data collection and system
virtualisation, this project establishes a practical pathway towards an intelligent, self-learning EMS.
Continued refinement and expansions will further strengthen the role of the DT in renewable

energy infrastructure.
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APPENDICES

Appendix A - Final Project Timeline
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